ALGEBRA I
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
S - 1. Suppose that for some sequence $u_{n}, u_{0}=3$ and $u_{n+1}=-3 u_{n}+7$. Compute u_{2}.
S-2. Factor completely over the integers: $x^{4}-25 x^{2}+40 x-16$

Part II.
GEOMETRY
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
S-3. Square $A B C D$ has area 25. If square $A B C D$ is revolved 360° about side $\overline{A B}$, a solid is formed. Compute the volume of the solid.

S-4. The line $y=2 x+2$ is the image of the line $y=\frac{1}{2} x-4$ after a reflection in the line $y=a x-b$ for some positive integers a and b. Compute the ordered pair (a, b).

Part III.

ALGEBRA II / ADVANCED TOPICS
Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.
S - 5. Compute all values of x that satisfy the following: $\frac{x^{3}-x^{2}-4 x+4}{x^{2}-3 x+2}=0$
S-6. The digits $1,1,2,2,3,3,4,4$ are used to make an 8 -digit number. Compute the probability that in the 8 -digit number, the 1 's are next to each other and so are the 2's and 3 's and 4's.

R-1. Compute the least positive integer value of x that satisfies $x^{2}-6.1 x-7.92>0$.

R-2. Let N be the number you will receive. A goat is tethered to the corner of a rectangular barn whose length is 10 meters and whose width is 4 meters. The tether is N meters long. Compute the goat's grazing area in square meters.

R-3. Let N be the number you will receive. The circle centered at the origin with area N passes through two lattice points in the first quadrant: (A, B) and (B, A) where $A<B$. Pass back the ordered pair (A, B).

R-4. Let (A, B) be the coordinates you will receive. The graph of the equation $y=A \cos x+B$ has a minimum at (C, D) where $0<C \leq 2 \pi$. Compute $C+D$.

R-5. Let N be the number you will receive. Circle O has diameter $\overline{A B}$. A circle P is inscribed in one of the semicircles formed by $\overline{A B}$. The semicircle has perimeter N. Compute the area of the inscribed circle.

